Automatic Web Navigation Problem Detection Based on Client-Side Interaction Data

Ainhoa Yera, Iñigo Perona, Olatz Arbelaitz , Javier Muguerza, J. Eduardo Pérez, Xabier Valencia

2021 - Human-centric Computing and Information Sciences

Aldizkariko artikulua

Ikerketa lerroa:
User interaction data mining
Autoreak sinadura ordenaren arabera:
Ainhoa Yera, Iñigo Perona, Olatz Arbelaitz , Javier Muguerza, J. Eduardo Pérez, Xabier Valencia
Azalpena:

The current importance of digital competence makes it essential to enable people with disabilities to use digital devices and applications and to automatically adapt site interactions to their needs. Although most of the current adaptable solutions make use of predefined user profiles, automatic detection of user abilities and disabilities is the foundation for building adaptive systems.This work contributes to diminishing the digital divide for people with disabilities by detecting the web navigation problems of users with physical disabilities based on a two-step strategy. The system is based on web user interaction data collected by the RemoTest platform and a complete data mining process applied to the data. First, the device used for interaction is recognized, and then, the problems the user may be having while interacting with the computer are detected. Identification of the device being used and the problems being encountered will allow the most adequate adaptation to be deployed and thus make the navigation more accessible.

Argitaletxea:
KIPS-CSWRG
Argitalpen urtea:
2021
Hasierako orria:
1
Bukaerako orria:
16
Fitxategiaren URLa:
https://doi.org/10.22967/HCIS.2021.11.017
Kalitate adierazleak:
JCR-2021 (6.558, 27 de 164, Q1 / COMPUTER SCIENCE, INFORMATION SYSTEMS)
La revista HCIS ha tenido en 2019 un factor de impacto de 3,700 en ISI/JCR Science Edition, ocupando el puesto 37 de 156 revistas (Q1) en la categoría Computer Science, Information Systems. Asimismo, figura en la
posición 45 de 280 revistas (Q1) en la categoría Computer Science (miscellaneous) de la clasificación SJR de Elsevier de 2019, con un factor de impacto de 0,661.
Argitalpenaren izena:
Human-centric Computing and Information Sciences
Bolumena:
11